
AD-A264 990
MENTATIO N PAGE Form Approved

0MB No. 0704-0k
1o average 1 hour per response. Including teh time for evisewlng Inslructions. searching existing data sources. gherng and#/
on of Information Send comments regarding this burden estimate or any orlrer aspect of this collection of inlormallo. ci,

. Ices. Directoratefor InformaltonOperallons and Reports 1215Jefferson DavslHighway. Suite 1204. Arlington. VA 2220f*4302
wru mu unce o0 Management and Budget PaperworkrReducdon Project (0704-0188) Washington DC 20503

1 AGENCY USE ONLY (Leave b 2 REPORT DATE 3 REPORT TYPE AND DATES CCVERED

March 1993 Professional Paper
4 TITLE AND SUBTITLE 5 FUNDING NUMBERS

HAsP-HETEROG2NEOUS ASSOCIATIVE PROCESSING PR: ZW65

6 AUTHOR(S) PE: 0601152N

R. F. Freund and J. L. Potter WU: DN302054

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8 PERFORMING ORGANIZATION
REPORT NUMBER

Naval CommPnd, Control and Ocean Surveillance Center (NCCOSC)
RDT&E Division
San Diego, CA 92152-5001

9. SPONSORINGJMONHTOIIING AGENCY NAME(S) AND ADDRESS(ES) 10 SPONSORING/MONITORING

Office of Chief of Naval Research AGENCY REPORT NUMBER

Independent Exploratory Development Program (IED)
OCNR-20T
Arlington, VA 22217

11. SUPPLEMENTARY NOTES

ELECTE
MAY 2 7 1993,

121L DISTRIBUTIONJAVAILABILITY STATEMENT 12b. DiSTR 9 D

Approved for public release; distribution is unlimited.

13. ABSTRACT (Madmu 200 wats)

Heterogeneous processing (HP) is a technique intended for Grand Challenge and other high performance computing
(HPC) problems and for bridging the gap between the theoretical potential of parallel processing and the current reality. In
HP, we aim to match code and algorithms to best-suited architectures, through techniques such as code profiling and ana-
lytic benchmarking. Associative computing (AsC) combines ideas from both associative memories and single instruction
multiple data (SIMD) computers to look at new ways to use fine-grain parallel processors to achieve results beyond what is
normally done by using spinoffs from sequential or multiple instruction multiple data (MIMD) processors. Heterogeneous
associative processing (HAsP) is a generalization of the concepts of both HP and AsC. In HAsP, the AsC assumption of
linking each datum with its own processor is generalized to assuming that each data file has its own dedicated computer.
This paradigm maps onto all levels of granularity and can be easily emulated on most machines. The goal of HAsP is to
allow the user to discuss the heterogeneous system at the highest possible level and with the tightest possible synchronism.
HAsP offers the potential of combining the simplifying programming approaches and algorithmic efficiencies of AsC with
the performance of HP.

Son 93-11959

Published in Systel, i0;,neeosa l. 9 1-4, pp 25-31. II 1 111! 11111111l1111111
14. SUBJECTTERMS 15. NUMBER OF PAGES

high performance computing
heterogeneous processing 16 PRICE CODE

superconcurrency

17. SECURITY CLASSIFICATION 1. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT
'OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAME AS REPORT

NSN 754001-280-6500 Standard form 298 (FRONT)

Best
Available

Copy

UNCLASSIFIED
21jL NAME OF RESPONSIBLE INDIVIDUAL 21b. TELEPHONE PWn/udArWaCode) 211t OFFICE SYMBOL

R. F. Freund (619) 5!5&-4071 Code 423

Accemion Fo: __o

NTIS C.R1 .I
DTIC ... *'

Un.a ox. ,.-,K -

Bythg ')•.....................

B y

Dist, bib'tio:; I

Av~aUa:lity C:des

SA~vh,! arc;.: lor

Dist Special

NSN 7540-01.280-55c0 Slanad form 20 (BACIQ

UNCLASSIFIED

HAsP HETEROGENEOUS ASSOCIATIVIJ PROC,(SSING

R. F. FRiFUNzt and J. l. l'0o1iR+[
tNaval (ommnard. Control and Ocean Surveillance Center. NRail) 423. 271 ('.talina lhd.

San Diego, CA 92125-5000. U.S.A.
eKcnt State University. U.S.A,

Abstract--�Ieterogeneous processing (HP) is a technique intended for Grand Challenge and other high
performance computing (HPC) problems and for bridging the gap between the theoretical potential of
parallel processing and the current reality. In HP, we aim to match code and aleorithnmi to best-suited
architectures, through techniques such as code profiling and analytic betichmarking. Associative comput-
ing (AsC) combines ideas from both associative memories and single instruction multiple data (SIME))
computers to look at new ways tO use fine-grain parallel processors to achieve results beyond what is
normally done by using spinoffs from sequential or multiple instruction multiple data (MIMD) processors.
Heterogeneous associative processing (IHAsP) is a generalization of the concepts of both lIP and AsC.
In HAsP, the AsC assumption of linking each datum with its own processor is generalized to assuming
that each data file has its own dedicated computer. This paradigm maps onto all levels of granularity and
can be easily emulated on most machines. The goal of I IAsP is to allow the user to discuss the
heterogeneous system at the highest possible level and with the tightest possible synchronism. HAsP offers
the potential of combining the simplifying programming approaches and algorithmic elliciencies of AsC
with the performance of HP.

1. INTRODUCTION system. To be efficient the methodology must support
the existence and addition of high level operators

Distributed heterogeneous high performance corn- such as sum, convolution, matrix multiply, etc. The
puting (DH-HPC) is the "tuned" use of heterogenous short-term objectives for HAsP arc the application of
suites of sequential and parallel HPC processors DH-HPC and associative computing principles to
to obtain cost-effective HPC and!or metacomputing develop heterogeneous processor suites spanning
performance.'"- The essence of DH-HPC is the ability wide problem sets and to develop new methods for
to obtain maximal execution by mapping the compu- bcnchmarking, code and data profiling, and the
tational tasks onto the best-suited architecture. intelligent management of selected DH-HPC suites.
The intent is that for problems with diverse eompu- A major short-term objective is the extension of
tational subtasks, the overall performance cost- DH-HPC paradigms and associative computing prin.
cffcctiveness will be better than any comparable ciples to heterogeneous suites forming a virtual as-

* single processor. In addition we aim to reduce sociativc computer.
the applications programming effort since well-
matched code leads to natural implementations. The
beginning forms of DH-HPC were cases in which 2. DISTRIBUTED HETFROGENEOVS lIC
codes were profiled and run on the best-suited ma-
chine with the data following along. As discussed Shared memory and message passing are two basic
below, however, we believe that the ultimate ex- paradigms of computation derived from conventional
pression of this paradigm is reached in a DH-HPC multi-user concepts that could be used for a hetero-
environment in which the data are profiled and geneous supermomputer system. Linda ' is a shared
remain resident on the best-suited machine and differ- memory paradigm based on an associative memory
cnt instruction streams are passed to it. In other concept. Data (tuples or records) to be processed
words, HiAsP is an IIPC form of MISD processing, are "put" into a shared memory and idle proccssors
The long-term objective is to develop a methodology "get" tuples from the memory to work on. Linda
suitable for a heterogeneous suite of supercomputers, assumes equal power processors which treat data like
The methodology should be effective, expressive, resources.
extcnsible and efficient. fly efficient, we mean easy Actors' is a message passing, fine grain, obje.t
to use and applicable to all types of architecture, oriented approach for concurrent computing. It uses
Bly expressive we mean it is usable for all types three primitives: create, send: and btcome. Where the
of problems. Thus, while DIt.liPC problems are get and put primitives of Linda generalize the shared
our primary target, our goal is to also evaluate memory model, the create and send primitives of
other compute intensive problems such as dynamic actors generalize the process creation and message
datt hases. xtenIsihle means thai the methodology passing concepts. Actors allows you to reason aKut
must be flexible enough to accommodate new the system; however, reasoning is done at the "actor".
machines and architectures as they tire added to the i.e. low level message passing level.

25

R. F. FREUND and J. L. POTTER

BBN's TCL (tool for large grained concurrency) able overhead to execution and ignores the communi-
scs high level linguistic constructs and has a virtual cation cfliciency and natural parallelism of SIMD,
iachinc concept for organizing parallelism. The vector and other "tightly coupled" architectures .
ompilcr divides the program into continuations There should be a minimum of communication
vhich are parceled out by tile scheduler for execution between computers to determine what to do next. A
,n the most appropriate machine. Implicitly, this is high level command which encompn.sses both parallel
, message passing or object oriented approach, (i.e. loops) and scalar operations is needed.
.e. the data and command must be sent. The virtual Efficient system management demands that the OS
nachine primitives range from host language (LISP) communications be at the highest possible level but
)rimitives to high level commands. TCL maintains computation be at the lowest level of parallelism.
t local view. If there are multiple users. each has For example, function/operations should take files as
heir own TCL scheduler. Thus each works most arguments instead of records or tuples, but vector
:fficiently if it has application specific information operations should be done at the machine level not at
md can concurrently interrogate processors from the system level.
heir current status. Most distributed operating systems are extensions

Both the Linda and Actcrs models were designed of MIMD paradigms. As a result, there is no natural
"or and work well on single MIMD computers, but way to match the proper computer to the compu-
.vhen the concepts are moved to a heterogeneous, tation. For example, in Distributed Linda, both a
Jistributed network environment, considerable over- SIMD and a MIMD could issue a "get" command
head may be incurred. Linda is essentially a data for the same tupel. The race condition is determined
driven approach controlled by the instances of arbitrarily, not on the basis of which computer is
data tuples in shared memory. By definition, this better suited for the task. The basic job could be
approach requires a considerable amount of data programed so that the "best" architecture issues the
sharing. When implemented (as intended) on a shared "get"; but then the "next best" architecture may be
memory machine, sharing requires only memory sitting idle while the "best" one is doing all of the
reads and writes. However, if the paradigm is moved work.
to a distributed heterogeneous system, the data Associative computing' is a programming para-
must be physically moved resulting in considerable digm developed explicitly for massively parallel
overhead. Actors, being a message passing model, SIMD computers. It uses the concepts that each
assumes (guarantees) that messages are delivered, datum has its own dedicated processor. Thus, in
therefore it is possible (probable) that large portions associated computing, commands are broadcast to
of system resources (both hardware and software) all components. Those components which recognize
are devoted to message passing (i.e. buffering and that the commands are applicable to them (using
forwarding data and commands) not computing. associated techniques) execute them. The associative

A general problem of most conventional computing paradigm can be combined with DINS to
approaches to heterogeneous computing is that they form an efficient comprehensive DH-HPC system.
are bottom up. That is, they provide relatively
few low level primitives that support a specific 3 IETFROGENEOUS ASSOCIATIVE PROCESSING
MIMD paradigm (Linda shared memory, actors
message passing). These primitives are intended to be
imbedded in conventional sequential languages (i.e. The basic assumption of associative computing
FORTRAN, C, etc.) or form the foundation of a is that each datum has its own dedicated processor,
specifically designed "high level language" and to be In the HAsP environment, this assumption is general-
executed on a single computer. ized to assuming that each data file has its own

The bottom up approach imposes several restric- dedicated (possibly parallel) computer. The distinc-
tions oti the paradigms. For example, in Linda, tuples tion between an associative memory and an associat-
are singular, i.e. they represent a single data object or ive computer cannot be over-emphasized. Associative
record. By putting pointers in a tuple, arrays and memories require that the selected data be moved to
struCtures can be referenced, but the basic inode of a central processor before they can be processe.
operation is thaHt the normal case is scalar, the An associative computer hiats a separate prowcssor
exception is parallel and requires more complicated for every datum wherever it is located and is thr,
syntax. A more general, more powerful system is an inherently distributed system, The associati•e
achieved if the primitives ife composed df entities computinig paradigm maps well onto all lekti oft
which include hothl parallel and scala r as equi'valent parallelism I'rom low level massiv'Cly parallel SIMI)
cases, coi ptuters to high level heterogenlous pxarallelmvni

hi Actors the reconiniended approacvh lo exeecte aa -mid can he easily etmlulated oill Illost IIoChitle,, l'oth
loop inl parallel ofn a MIMI) nacuhme is to 1ieak scqtilentlal and parallel.
it into Individual Inmessages, one 'or caIch I lvaitioIl ol' Tlhecoal of I IAsP' is ,o dee\lop an eonvitotmienit
the loop This approach shotld not IV estenddctl o it that allot\ the uise.r to s'uss the heter,,ee'u,,
heterogeieous envirmiinent, since it adds consider. ,\smeil at the lhiglest poss"t'Nle kc\ and \mllh the

I I Al r u.'rci. 1scd, p'erj 27

tIL'htIt posi•Ihe ,,ne'hromnsm. Thait is. the primitiv'Cs unique. At the end of an action cycle the ;tate would
"lhould ericompass parallelisnm and hicierogencous he updated.

co'r lr tlOl at • ther normn and treat "scq tlelnlial yoni (5) "I.oad balanci ng'- is done dynamically on in-
NCuIuMann Co•putation" as a special case. itial data load. That is, the HAsP heterogeneous

[I'c IlAsi' paradigm' makes several assumptions compiler using static code profiling would consult the
for Irrgc heterotcneous computing networks: concordance to determine the best set of computers

to use. At run time. dynamic data profiling would be
I) there is much more data than code; used to refine the decision,.,.Then the data would

(2) data sets typically have one or a tlzw (related) be input directly to the appropriate computer. Unlike
natural organizations that are basic to the various OOP approaches that must (at least conceptually)
instructions streams that may be directed against move data and code from node to node, HAsP
themn emphasizes the movement of code alone. Once the

(3) the cost of' communication is high compared data have been input to a computer, they are rarely
with the cost of computation (or equivalently, the moved or copied.
speed of transmission is slow compared with the
speed of computation); and 3.1. Virtual heterogeneous associative machine

(4) any system can be viewed as a virtual associat- In HAsP, a layered view of heterogeneous pro-
ive computer with a (small) common set of com- cessing is advocated. Each layer consists of a virtual
mands and a multiplicity of data tuples each with heterogeneous associative machine (VHAM). Thus
their own processor. there is a VHAM for large area (nation wide) net-

The conclusion is that the data should bc sent to works. A VHAM for region wide, statewide, building

the most appropriate computer initially and the code wide, and local area networks as well as a VHAM for

sent to the data. a single heterogeneous computer. Not all HAsP
In our opinion HAsP can be viewed as a MISD systems need have all levels, indeed three or four

paradigm, i.e. one in which various instructions levels of VHAMs would probably be most common.
aCPU) Where the code/data is known to be mutually exelu-streams are sent to any given machine (or CP)sive, multiple associative commands can be issued.

which holds those data sets best suited for it.
A layered operating system, a virtual machine At the top most level, the HAsP commands at each

organization, automated data conversion, code and level are of a coarse enough granularity that a single

data profiling, and a layered metacompiler are all physical channel or bus could be divided into several

important concepts for HAsP. At first glance, HAsP time shared concurrent channels.

is similar to message passing systems; however, there VHAM consists of three parts. First, it is a set of

are five significant differences. For example: "instructions" which defines a virtual heterogeneous
associative machine. Second, it contains an execution

(i) In HAsP, commands are broadcast to the engine which processes HAsL instruction. Third, it
entire system, not to specific nodes. Nodes select is a system of protocol where by new user defined
commands based on their data content, not address. "instructions" can be added to the system. Thus
A command consists of an: (i) action; and (ii) argu- VHAM is a paradigm with a predefined minimal
ment patterns delineated by keywords. run time expandable instruction set and execution

(2) Data movement is minimized. Commands protocol. In conventional machines, instructions are
rarely contain data. However, commands to move delivered to a CPU and they are executed without
data may be sent and as a special case, a command question. In the VHAM, instructions are broadcast
may cause a node to send a reply. to all of the cells, but each cell must determine

(3) When a command is received the argument wlhcther to execute the instruction. This determi-
patterns are used to search the local data base for nation is performed as follows: upon receipt or an
items that match. In a multi-user environment, instruction, a node "unifies" it with its local instruc-
part of the pattern may include user id and/or job tion set of library calls and extended instruction and
numbers. Matched items arc flagged. The flags datafiles. If there is a match, the appropriate routine
are attached to the appropriate keywords and control is called. The node will perform format conversion if
is passed to the action software. Pattern matching necessary. The called "instruction" may in turn issue
is performed in a mode appropriate for the local VHAM instructions. Thus control is distributed even
•,'mputcr. On a SIMD machine, the pattern match- though every level of the HAsC has a designated
ing is done in parallel. On a MIMD machine, control node. That is, a "program" starts by issuing
it "could" be done using message passing of the a command from the designated control node, If a
shared memory paradigm. On a sequential machine receiving node receives a command that is in effect a
it would be done sequentially on sorted tuples or subroutine call, it may become a transporter node.
by hashing. It may first perform some local computations and

(4) It is possible for two or more commands to be then start issuing (broadcasting) commands of" its
issued which match the same data items, In these own, If the node happens to be a port node, the
cases a "state" item would be included to make tuples commands atre issued to its subset as weil ats to its

28 R. F. FREUND and J. L. PoTTER

own network. Thus it is possible (even probable) computer, the data must be "corner turned". Data
that multiple instructions streams will be broadcast reformatting would be handled automatically by the
simultaneously. OS and application languages just as float to fixed

conversion is handled in conventional languages.3.2. A virtual associative computer

The virtual machine organization should be as 3.5. Metacompilers
closely coupled as possible. The main question is: The concept of developing a metacompiler for a
what are the virtual commands? The commands heterogeneous group of computers is very enchant-
should be very high level (i.e. convolve, fit, Gauss) ing, but very difficult. The efforts from the area
consisting of entire programs or algorithms. The of vectorizing compilers might be a first step, but
same algorithm may be in two or three different they emphasize transforming code designed for one
forms; one for each type of machine in the system. class of machines and transforming it to execute on
A concordance records all of the forms and related another closely related class. Furthermore, current
parameters. For example, convolve may have four compilers make no effort to attempt to determine the
different morphs, one for each machine type or "best" machine for execution and the conventional
subtype, i.e. hypercube SIMD, grid SIMD or compu- analysis techniques for converting code to flow
tation model, messsage passing or shared memory. graphs is slow and may not be the most effective
Each concordance entry states its parameters, speed, approach. That is, with the current technology, it
data format, etc. should be possible to analyze a code and distribute . -

Ideally, the layered OS language would be the same it among a suite of machines, but a sequential
as the virtural machine and concordant application algorithm cannot be analyzed and replaced by a new
languages. The commands from different OS levels parallel algorithm.
may overlap. They would' range from basic to com- The automatic detection of parallelism is basically
plex depending on the level of the OS. Although limited to nested loops in the initial code. For
the OS and application languages would share the example in Linpack, vectorization can be used to
same vocabulary, the OS language is real time and optimize the inner most loops, but searching for
interactive. The application language is "compiled" idioms such as finding the maximum value of a -'
and executed as a background job. There would be a vector and replacing it with a (SIMD) parallel maxval.
".macro" mode of operation where the user would function is much more complex because of the variety
enter his job inter-actively via the OS language. of ways in which the function can be expressed. .
When he got the correct results, the history of the OS Current technology calls for the use of "patterns".
command could be saved in a file, edited if necessary, A different pattern must be used for each possible
and compiled and executed as a program. realization of the function. This is an adlhoc approach

and is not a suitable solution. The traditional analysis
3.3. An associative operating system techniques may not be applicable. For example,

The associate operating system would consist traditional data flow analysis provides reaching
of one per level per virtual associative computer. definitions, available expressions and loop optimiz-
In order to develop a layered OS, all aspects of a ation information. This information may be very
conventional operating system needed to be separ- useful for planning the top level virtual machine
ated, analyzed and then reorganized. For example, organization; however, in a data parallel language
currently in a heterogeneous system, a conventional this information is not normally useful. That is,
multi-user operating system is at the bottom layer in a conventional sequential language, flow of
of the system. All operating systems have a data control is based on the relationship between scalar
move function from one disk file to another. In a variables. However, in a (data) parallel language
heterogeneous system however, this function needs control is determined locally by datum specific logic.
to be generalized to including moving files from one Indeed, this kind of control is equivalent to using
file server to another and should be put at a higher arrays of variables in a sequential computer. As
level in the hierarchy. That is, general file moving is always, pointers and arrays create situations which
not a primitive but a high level function. Conven- arc very diflicUlt to handle using traditional analysis
tional localized file moving is of course a primitive techniques.
function and is the degenerate case of general file
moving. 4. COD)E EXNECUTION MOI)EIM,IN(;

3.4. Automatic data conversion In a heterogcneous supercomputer environmenit, it

The most important aspect of this approach is is imperative ito dynamically assign jobs to computers
to minimize the amount of data movement in the in such a \\ax as to optimize either throughput ot
system. However, when data is moved, it will he cxeclloe n speed tor both, ideallyl. This 11'lud,,
auttomatically converted from one lrne I'tl Ito anoliehr. di vidingl .lh Into Sulhiasks whitchl esec•teu ptxevuW all,
For e.xample, ir data is moved from a word serial on VI IA NI at all \dels. It is not silli•lt 1t tk\ \Wl
MIMID or vector machinte cn'ironmenl Iito a bit s•rial taskI ui o a Ii ',I li' lirst serv\'ed hai, 4t ,oniv s 1lmpk"

priri tcheme. Optimal results can only hc aclhie%.e'd searching. in :in associatiue computing environlment.
b% code execution modeling. Code .\cCutiiin mtldcl, can he more effective than traditional sorting. The
ing Includes the a aihr, to a.ctira tcl% predict how. a ; pecilication for a problem Set might merely consist
Code data set combinatI wiI \Cc tl t c oil a VI I \%l . ol" work problems th at need to he comnputed in an'
It incorporates components of tbenchmarkig. i code man1ner.
proliling and data protiling. This section proi ides
background on these topics and describes a prttotype A distinction between benchmarking and code
s.' stem. profiling also needs to be made. Benchmarking is the

process of establishing a suite of codes to model a
4.1. Benchmrarking "typical" workload so that different architectures

and machines can he compared. Howevcr, most
Benchmarks are commonly used to test and evalu-an mchesa bcoprdHwvrot
Btenchmks, alrcthms commonlyusedtest and havelug benchmarks have been developed for a traditional

ate codes, algorithms and machines. and have long sequential machine environment. Vector machines

been used, especially for HPC. Nevertheless there are sequend tiamien Vc ttor this

fundamental differences in the underlying uses of have been developed to optimize code written for this
benchmarks that often lead to semantic misinterpre-environment. On the other hand SIMDsbetinchmars tconfuon. laor examac iscientificuserps were developed as an independent architecture.
tation and confusion. For example, scientific users In a heterogeneous HPC system, a more rigorous
of HPC often want results from benchmarks as an I eeoeeu P ytm oergru

general purpose approach for comparing computers
indicator of how their existing code will run on new is needed so that computing resources can be
machines. Designers of new algorithms or machines s
often want to know the future potential, including assigned dynamicallya Freund and Petersont have

particularly the result of radical redesign of code proposed a formulation for determining the best task

and algorithm. The term "peak performance" has assignments in a DH-HPC environment. Dynamic

often been reserved for this last concept, even though assignment requires that the persormance of the
sustine coe prfomanc sedomcoms cose currently available computers on waiting jobs can

sustained code performance seldom comes close be predicted in such a way that they can be meaning-
(although intelligent assembley language coding can flycmae ota notmlasgmn a

sometimes lead to sustained performances several fully compared so that an optimal assignment can

times faster than "peak"). One of the more interesting Code profiling is the technique of analyzing pro-

recent approaches was that of Gustafson et al.6 C ode terming is the taynbe o pting fo.

in wichthe prposd a calblemetodoogygrams to determine how they may be optimized for
in which they proposed a scalable methodology execution on any given VHAM. In a heterogeneous

..: " (SLALOM) in which the amount of work done in supercomputer environment, code profiling can be
a fixed time is the key measure of performance, combined with benchmarking to accomplish code
rather than the amount of time to do fixed work.
Furthermore the SLALOM approach emphasizes This section on code execution modeling, defined

the need to solve the problem, not run a particular bois dedtinto to sbection toughputSbelow, is divided into two subsections: throughput
code (which has been written in a style inherently prediction and data profiling. The first proposes an
favoring one type of architecture). We propose some approach for code profiling including a set of atomic
refinement of terminology in order to expand on the commonly used parallel operations which can be
differing levels of benchmarking by examining several easily benchmarked and then combined into more
situations: complex formulations to not only predict the time of

(a) Consider the case of large physical simulation execution for a piece of code, but to also provide an
code, e.g. climate modeling. It may be impractical to overall estimate of throughput for an entire DH-HPC
make radical changes in the code or algorithms in the system. An important aspect of this work is the

. near or intermediate futur-% benchmarks needed. ability to predict future performance; and while the
(b) Let "Benchmark S.t" be reserved for codes approached described below can be laborious, it

with little or no "tuning", e.g. the LINPACK test set. is intended that the modeling be automated using
(c) Let "Predictor Set" be reserved for codes in techniques developed for conventional vectorizing

which significant rewriting of code, including assem- compilers.
bly language, is permitted, e.g. the PERFECT Club 4.1.1, Throughput prediction. This paper hypoth-
suite. In the case of new vendor products, this would esizes that an important class of codes can be
offer the vendors the challenge (and opportunity) to modeled as alternating sequences of scalar and
do the best they can, on real problems. basic parallel operations and that these codes can

(d) Let "Subproblem Set" be reserved for cases in be meaningfully compared on vector and SIMD
which we change the algorithm, e.g. moving from one machines. These basic sequences can be combined
kind of sort to another, as might happen in optimally in useful ways to model the operation of the code,
moving from one type or architecture to another, The basic sequences in turn are made of component

(e) Let "Problem Set" be reserved for cases in operations which can be combined to produce atn
which the whole approach might be changed, e.g. estimate of the throughput of a machine for the
Potter5 has clearly demonstrated that in moving sequence. Scalar sequences are assumed to consist of
from von Neumann machines to SIMD machines, unit operations, so that the throughput for a scalar

30 R. F. FREUND and J. L. PorTTR

sequence is just the reciprocal of the number of scalar On a vector machine the throughput raises asymp-
operations times the scalar execution speed. totically to the maximum rate very quickly. On a

Vector sequences are assumed to be composed SIMD machine, the throughput rises linearly until
of VECOPS.1 The VECOPS benchmarks are a set the size of the machine (i.e. the number of PEs)
of vector operations which are frequently used by is exceeded then rails to the average rate reflecting
physical scientists in their work. VECOPS can be the average of the full vector and the nearly empty
combined using the equations developed below to one. It rises linearly again until the array size
produce an estimate of the throughput for the vector is exceeded again and then falls to 2/3, etc. (as
sequence. Accordingly, two equations have been SIMD machines have a relatively slow cycle time, the
generated to predict the throughput of SIMD and throughput is low when the machine is partially
vector machines. For SIMD machines, let v be the loaded).
vector length, n the number of processors, r the These above equations answer the questions: given
quoted (maximum) rate for the arithmetic operation a data set with vectors of a specific size, which is
and t the resultant throughput; then the better machine for execution? Given that a code,

le, can be modeled by an alternating sequence of
vr strings of scalar instructions followed by strings

(!) of parallel instructions, then le can be represented by
-n the following sequence:

If a compound VECOP operation is being performed •'-w,, 1 Iwpp 1 w,2s 2 w'p2p2 ... (5)
(i.e. a vector add and multiply or, SAXPY), the
combined rate, r can be calculated by the sum of where w, is a weight representing the number of
resistances formula. For example, for two operations operations in each list, s, is the quoted throughput
r, and r2 , the combined throughput, r1, is: for scalar operations and p, is the calculated through-

put for the parallel sequence. Then the throughput
I I r, r2 for the entire sequence can be calculated from the

-- +- or r= - . (2)
r, r, r2 r, + r2 formula:

For n operations, this generalizes to:
1= . (6)

Z (w,,s, + w,,p,)
fl r,

or r,- (3) If no MIMD parallelism is present, this reduces
r, ,,r, Z f[r, to:

I-I

The r, calculated above can be used in the formula for t = (7)
SIMD processors to determine the throughput for It's + 11w0,,

the combined. VECOP operation.
The peak throughput for vector machines often The basic tenants of this model were tested using

quoted is calculated by multiplying the basic cycle the CONVEX and DAP computers in the NOSC
time by the number of arithmetic units in a processor. Superconcurrancy Laboratory. The CONVEX
However, it is not always possible to make full use of C-210 has a quoted peak rate of 50mflops and
all the units. For example, if a processor has two the DAP 510C has a peak rate of 140mflops ror
units, a vector multiplying can only be executed at 1024 PEs,
half the quoted rate because only one of the units is 4.1.2. Data profiling. An important component
effectively used. On the other hand, a vector multiply of code execution modeling is data profiling, In
and add will execute at the full rate. Another factor a general purpose heterogeneous environment,
is pipeline setup time. This factor must be applied where many machines can perform the same
on every reload of the veclor registers, For vector ttask, such as FFTs, convolution or Gaussian limin-
machines, let v he the vector length, r the quoted ation, the question is which machine can do the
(maximum) rate, a the number of units per processor, hesl jotb (i.e. execute the fastest) oil the S•pecilic data
ut the number of units used by the operation, p the set
pipeline setup tinlme:. tihe rcstlllanlt hroughput ritle, As an example ol'tala protiling in a HIAsPenviron.
and / the length Iol' tile vector registers: then ment, consider the matrlix multiply. Let A be an I x J

mlatix, (t1,,), and |1 .1 'I x' tb,, (. The product C,
''.?#, i lt an , & m t1t \, r i s, o , I,¢

1 /~ I /

II

II .\sI hl|iertoj•el1eor+ ,t1v.•'OL'ii•,L ;1rW'c.,IrIr e

In order to comllpulte the I v K terms, (w,•), we would Ifor long \ctors this is dwarfed hy the reduced
need a triple loop ol' the form (iISSUlirlg appropriate operation Count h\• SDIO))T). It should IV note(d
initialization): that for a S I IM l) n rat. these factors are largely

irrl'e1vatnl. Il n eac+h ofili the ix ca;.ses we %%otlld store tile

for 1, to Iconlpoitne, t ' of the \ecihfrs (Ws dicaited hy inner loopi
for I, at eacth node and broatdea st the scalar valtue. From

the point of view ol"a .SHIMI) machine, it matters not

for i+ = I to L, whether the muhliply is the scalar broadcast value
(SAXPY) or not (SI))T. Sil six cases are cssentially

t ' ,, 4 dtkhe same.

end

end 5. CONCLUSION

end. The HAsP approach outlined here is intended
to provide a flexible. comprehensive paradigm for

The Ls are, of course, the ranges. J, J and K, computation on heterogeneous systems of supercom-
with the Is being their corresponcling indices, i, i puters. The paradigm is applicable to all levels of
and k. Mathematically, it does not matter which computing from single heterogeneous computers
of the six possible ways these are computed. How- to homogeneous local area networks on up to large
ever, Dongarra et al.' have clearly demonstrated that nation wide heterogeneous networks. The system is
these arrangements can be significantly different com- designed to minimize data movement and communi-
pute times when computed on a global memory, cation overhead and therefore maximize throughput
vector machine. Since there are several factors that and execution speed. The initial formulas for code
enter into these performance differences, it is very execution modeling have been developed and verified.
much the concern of the programmer to render The concept that data as well as code must be profiled
the order of the loops optimal depending on the was developed and verified by experiment. The next
specific circumstances. In the HAsP language, this aim is to develop a prototype HAsP system with
is not necessary, since the data profiling does this two or three levels of VHAM in a heterogeneous
automatically, environment.

To understand how this is done, let us look again
at the schematic code above. In the two (of the six Acknowledgenien s -This work is sponsored by the Office
.cases) in which (and its associate index,) form the o"f Naval Technology, the U.S. Navy-ASEE Summercass inner loop, the c is a scalar (constant) for the Fellowship Program, Kent State University and the Nava.

purposes of the inner loop and this is called an SDOT
type of operation; the two vectors (the aj and the bik)
are multiplied component-wise and then each com- RlEFERENCES

ponent multiplicand is added to the constant Cik. I. R. F. Freund, "SupcrC or distributed heterogeneous
In the other cases, i.e. where J is not the innermost HPC", Comnputing Syvstens in Engineering 2(4), 349-355
range, we have the SAXPY family of operations, in (1991).
which either the a,) or the bjk arc a scalar for the 2. R. F. Freund, J, L, Potter and H. J. Siegel, "Avoiding
purposes of inner loop. In these cases, we have a unnatural acts", Supercomnputing Review, in press,

3. M. Arango, D. Berndt, N. Carriero. D. Gelertnerscalar (either a,, or bk,) multiplied to each component and D. Gilmore, "Adventures with network Linda".
of the other element, a vector in the inner loop, and Supercomputing Review, 42-46, October (1990),
then each component multiplicand is added, com- 4. G. Agha. Actors, The MIT Press, Cambridge,
ponent-wise, to the vector, c*. As mentioned above, Massachusetts, 1986,
a number of (occasionally conflicting) factors deter- 5. J. L. Potter, Associative Coniptiting, Plenum Press,

New York, 1992.
mine the right order to perform the loops, For 6. J. Gustafson, D, Rover, S, Elbert and M, Carter,
example, it is generally better (in FORTRAN) to "Slalom update", Superconductivilt. Review, 56-61.
have the innermost loop on the leftmost index so as March (1991).
to avoid non-unit stride through memory and the 7, R. F. Freund and L, 3, Peterson, "If the 'network is

the computer', then.. ", Siipercompiuting Review, July
increased likelihood of bank conflict this brings. It is (1991),
also usually more efficient to have the innermost loop 8, 0. M, Lubeck, "Supercomputer performtanice the
on the longest range, SAXPY is generally better for theory, practice, and results", Ath-anes in Ceanwpaers
short and medium length vectors whereas SDOT is 27, 309 (1988).
better for longer vectors (at least one reason for this 9, J, J, Dongarra, F, G. Gustafson and A. Karp, "Imple.menting linear algebra algorithms for dense matricce
is that SDOT requires summing up the multiplicand on a vector pipeline machine", SIAM Rew 26(t),
terms which usually requires a scalar loop; however, 91-411 (1984),

